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Introduction 
When using remote sensing data several pre-processing steps can be applied that aim at removing 

artefacts from the images that are not related to the actual reflectance of the land cover (e.g. sensor 

effects, atmospheric, and illumination conditions) (Young et al. 2017). However, the required pre-

processing steps applied to the images also depend heavily on the intended use of the data. When 

e.g. performing a sample-based classification of individual scenes or a temporal stack of scenes 

within a footprint, several pre-processing steps may be skipped because training and classification 

are performed within the same domain (i.e. they are based on exactly the same data). This is 

different for e.g. trend detection algorithms, classifications across several footprints, or the 

classification of composite images. For such applications, a rigorous pre-processing is required so 

that land cover reflectance can be compared across footprints and/or time. This allows that e.g. land 

cover trends are extracted in an unsupervised manner or training and classification are not required 

to be in the same domain (i.e. classification samples collected on one image may be applied to 

another image) (Young et al. 2017). 

In this document we present the methodological background of an image composition tool, fully 

implemented in Google Earth Engine (GEE). Image composition refers to an approach that creates a 

single, cloud-free image composite by selecting for each pixel location the best pixel from a time-

series of multiple images. The combination of data from multiple images, however, requires that 

several pre-processing steps are applied to these images prior to the image composition. Figure 1 

shows the sequential workflow of the required pre-processing steps. 

Figure 1: Sequential workflow of potential pre-processing steps, adapted from (Young et al. 2017). 

 

 

The remote sensing data, provided as level 1 product and the band values being digital numbers 

(DN), first needs to be georeferenced and/or co-registered so that pixel locations from one image to 

the other correspond (geometric correction). Next, several steps for an absolute correction are 

required so that we obtain the surface reflectance, which already allows a comparison across 

images. These steps include conversion to radiance to obtain at-sensor radiance, solar correction 

that results in the top of atmosphere (TOA) reflectance, and the atmospheric correction that 

https://paperpile.com/c/sxAkfD/QHHy
https://paperpile.com/c/sxAkfD/QHHy
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provides surface reflectance (SR). For Landsat, standardized pre-processing routines to obtain SR 

products have already been established (cf https://landsat.usgs.gov/landsat-surface-reflectance-

data-products) while Sentinel SR products (referred to as “bottom of atmosphere” (BOA) reflectance 

by ESA) as well as harmonized Sentinel/Landsat SR (or BOA reflectance) products (cf 

https://earth.esa.int/web/sppa/meetings-workshops/acix) can be expected in the near future. 

When performing an image composition using these standardized products, several pre-processing 

can thus be skipped and focus can be laid on the steps that follow, i.e. the topographic illumination 

correction and the image composition strategy. For these two steps, a variety of approaches and 

methods exist and the most appropriate pre-processing routine depends on study area and focus. 

For example, topographic illumination correction should be performed in a mountainous study area, 

but in regions with moderate terrain, this step may not be required. Furthermore, different 

topographic illumination correction approaches exist and their performance varies depending on the 

context. Some methods perform better in steep, vegetated areas, while other approaches are 

computationally more efficient, but are more suitable for regions with moderate terrain and/or 

limited vegetative cover (Teillet, Guindon, and Goodenough 1982; Riano et al. 2003). Similarly, the 

image composition strategy needs to be tailored to the study area and focus. For the evaluation of 

the “best pixel” (i.e. the pixel that is used in the composite) from a series of pixels, recent research 

suggests the use of multiple criteria, including scores for distance to clouds and cloud shadows, 

scores for each pixel reflectance in relation to the reflectance of the other pixels from the time-

series, and scores for seasonal or annual variation (Hansen et al. 2008; Roy et al. 2010; Potapov, 

Turubanova, and Hansen 2011; Griffiths et al. 2013, 2014/8; Frantz et al. 2017). The way this scoring 

is performed, however, needs to be defined by the user depending on the study focus. This includes 

e.g. how pixel reflectance is scored (e.g. focus on low or high greenness) or the duration of the 

period that defines the time series of images used for the composite. Especially the last point 

requires flexibility, because the availability of “valid pixels” (e.g. amount of non-clouded pixels at 

each location) varies by region, season, and sensor revisiting period and usually needs to be 

evaluated for each situation. 

In the following two chapters we provide the methodological background for the topographic 

illumination correction methods and the image composition strategies that are implemented in the 

GEE image pre-processing and composition tool. It provides researchers with the methodological 

background to optimise the image composites according to their requirements and advanced users 

may adjust the tool by e.g. including other topographic illumination correction methods or modifying 

the image composition strategy. 

  

https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-data-products
https://earth.esa.int/web/sppa/meetings-workshops/acix
https://earth.esa.int/web/sppa/meetings-workshops/acix
https://earth.esa.int/web/sppa/meetings-workshops/acix
https://paperpile.com/c/sxAkfD/Dd0U+jx0I
https://paperpile.com/c/sxAkfD/IM9C+GmKa+Bag6+lUyX+boqr+zBjB
https://paperpile.com/c/sxAkfD/IM9C+GmKa+Bag6+lUyX+boqr+zBjB
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Topographic illumination correction 
In mountain areas varying illumination conditions related to sun position, slope, and aspect result in 

variations of the reflectance within the same land cover type and e.g. the same forest type on a 

sunlit slope shows a different reflectance on a shaded slope (Riano et al. 2003). This signal-to-noise 

ratio can be reduced by performing a topographic illumination correction that adjusts differences in 

solar irradiance related to slope and aspect, resulting in an image that approximates reflectance 

values that would be recorded over a flat surface (Sola, González-Audícana, and Álvarez-Mozos 

2016). Different approaches exist for the topographic illumination correction and they can be 

grouped into three categories: 1) Empirical methods, 2) physical methods, and 3) semi-empirical 

methods. The empirical methods do not use any additional data and derive the parameters for the 

topographic correction from the image, e.g. through the calculation of band ratios. However, by 

deriving the correction parameters through band ratios, the empirical correction methods result in 

the loss of spectral resolution cf (Civco 1989; Riano et al. 2003). This can reduce accuracies of e.g. 

multispectral classifications and therefore we did not implement any of the empirical methods in the 

GEE image pre-processing tool. The two other approaches additionally use a digital elevation model 

(DEM) for the topographic correction of the images. The DEM is used to simulate the illumination 

condition at the time of the image acquisition as shown in equation 1. 

Equation 1: Calculation of the illumination condition (IL) for each pixel at the time of the image acquisition 

using a DEM, with 𝑖𝑠 = incident angle with respect to surface normal; Z = solar zenith angle (incident angle for a 

horizontal surface, provided by the sensor metadata); s = terrain slope calculated from the DEM; a = solar 

azimuth (provided by the sensor metadata); a’ = terrain aspect (azimuth) calculated from the DEM 

 

𝐼𝐿 =  𝑐𝑜𝑠(𝑖𝑠)  =  𝑐𝑜𝑠(𝑍) ⋅ 𝑐𝑜𝑠(𝑠)  +  𝑠𝑖𝑛(𝑍) ⋅ 𝑠𝑖𝑛(𝑠) ⋅ 𝑐𝑜𝑠(𝑎 −  𝑎′) 

 

The physical methods model the full path of radiance through the atmosphere to the target object 

and backwards and do not derive any correction parameters from the image (Sola, González-

Audícana, and Álvarez-Mozos 2016). This makes the physical methods computationally efficient, but 

they only consider the incidence angles and do not account for diffuse irradiance, which tends to 

increase with increasing slope and vegetation. Physical methods therefore often result in the 

overcorrection of steep and vegetated areas (Teillet, Guindon, and Goodenough 1982; Meyer et al. 

1993). The semi-empirical methods overcome these issues by using a DEM and by deriving 

correction parameters through a linear regression between each image band and the illumination 

condition (IL or 𝑐𝑜𝑠(𝑖𝑠)). This correction approach gives the correction parameters a physical 

meaning and the semi-empirical methods were found to outperform the other methods in the 

majority of studies (Sola, González-Audícana, and Álvarez-Mozos 2016). Furthermore, the semi-

empirical correction can also be performed in land cover strata, which increases the quality of the 

corrected image even more (i.e. correction parameters are adjusted for different vegetation types 

and their specific diffuse irradiance) (Sola, Gonzalez-Audicana, and Alvarez-Mozos 2016). The 

physical and semi-empirical methods thus both have their benefits. On the one hand computational 

efficiency, but only for areas with moderate slopes (physical methods) and on the other hand 

computationally intensive, but with the ability of achieving a good correction even in steep and 

vegetated areas (semi-empirical methods). In the image composition tool we thus implemented 

both, a physical and a semi-empirical topographic illumination correction approach. We considered a 

large range of topographic illumination correction articles and also performed our own assessments 

to identify the best performing physical and semi-empirical methods from the vast range of 

topographic illumination correction methods. Finally, we chose to work with the Dymond-Shepherd 

https://paperpile.com/c/sxAkfD/jx0I
https://paperpile.com/c/sxAkfD/If3C
https://paperpile.com/c/sxAkfD/If3C
https://paperpile.com/c/sxAkfD/gtbA+jx0I
https://paperpile.com/c/sxAkfD/If3C
https://paperpile.com/c/sxAkfD/If3C
https://paperpile.com/c/sxAkfD/Dd0U+MgEO
https://paperpile.com/c/sxAkfD/Dd0U+MgEO
https://paperpile.com/c/sxAkfD/If3C
https://paperpile.com/c/sxAkfD/ccFy
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correction (physical) and the Statistical-Empirical correction (semi-empirical) (Dymond and Shepherd 

1999; Teillet, Guindon, and Goodenough 1982). 

We found that the Dymond Shepherd (D-S) correction, in contrast to the other physical methods, 

performs a moderate correction and does not result in very strong overcorrection of steep and 

vegetated slopes. This is, as shown in equation 1, because the D-S correction specifically considers 

incidence and exitance angles of reflectance (but still not diffuse reflectance). 

Equation 1: Dymond-Shepherd topographic correction with 𝜌 being the reflectance on a horizontal surface,  𝜌𝑠 

the uncorrected reflectance. Incidence and exitance angles on the level surface are 𝑖 and 𝑒 and on an inclined 

surface 𝑖𝑠 and 𝑒𝑠 (Dymond and Shepherd 1999). 

 

𝜌 =  𝜌𝑠  ⋅  
𝑐𝑜𝑠(𝑖)  +  𝑐𝑜𝑠(𝑒)

𝑐𝑜𝑠(𝑖𝑠)  +  𝑐𝑜𝑠(𝑒𝑠)
 

 

By assuming a view angle of zero (nadir) for the Landsat and Sentinel sensors, the parameters for the 

D-S correction can be derived from a DEM and the sensor metadata. 𝑒 equals the view angle of the 

sensor (i.e. 0), 𝑖 equals the solar zenith angle, 𝑐𝑜𝑠(𝑖𝑠) can be calculated using equation 1, and 𝑒𝑠 

equals the slope when the view angle is zero. 

The Statistical-Empirical correction (semi-empirical method) was found to outperform other 

topographic correction approaches by the majority of the publications. We thus implemented the 

Stastical-Empirical correction in the tool (see equation 2) and perform the topographic correction in 

land cover strata. 

Equation 2: Statistical-Empirical topographic illumination correction with wavelength and land cover 

dependent correction parameters. 𝜌𝜆,𝑗  is the corrected reflectance for wavelength 𝜆 and land cover stratum 𝑗; 

𝜌𝑠,𝜆,𝑗  is the uncorrected reflectance for wavelength 𝜆 and land cover stratum 𝑗; 𝜌𝑠,𝜆,𝑗  is the average 

uncorrected reflectance of the wavelength 𝜆 in land cover stratum 𝑗; 𝑐𝑜𝑠(𝑖𝑠) is the illumination condition (see 

equation 1); and 𝑏𝜆,𝑗  and 𝑚𝜆,𝑗m are the intercept and slope of the linear regression between 𝑐𝑜𝑠(𝑖𝑠) and 

wavelength 𝜆 in land cover stratum 𝑗 (Teillet, Guindon, and Goodenough 1982). 

 

𝜌𝜆,𝑗 = 𝜌𝑠,𝜆,𝑗 − (𝑏𝜆,𝑗 + 𝑚𝜆,𝑗 ⋅ 𝑐𝑜𝑠(𝑖𝑠)) + 𝜌𝑠,𝜆,𝑗 

 

The wavelength and land cover dependent correction parameters (intercept 𝑏𝜆,𝑗 and slope 𝑚𝜆,𝑗) are 

derived from the linear regression between the illumination condition and each band/wavelength 

within the land cover stratum using equation 3. 

Equation 3: linear regression between the illumination condition (𝑐𝑜𝑠(𝑖𝑠)) and wavelength 𝜆 in land cover 

stratum 𝑗 (Teillet, Guindon, and Goodenough 1982). 

 

𝜌𝑠,𝜆,𝑗 =  𝑏𝜆,𝑗 + 𝑚𝜆,𝑗 ⋅ 𝑐𝑜𝑠(𝑖𝑠) 

 

 

 

 

 

https://paperpile.com/c/sxAkfD/6w4O+Dd0U
https://paperpile.com/c/sxAkfD/6w4O+Dd0U
https://paperpile.com/c/sxAkfD/6w4O
https://paperpile.com/c/sxAkfD/Dd0U
https://paperpile.com/c/sxAkfD/Dd0U
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To apply equations 2 and 3 and obtain the correction parameters, a number of pre-processing steps 

are required. In the tool the S-E topographic correction has thus been implemented the following 

way: 

1) Topographic correction using the Dymond-Shepherd approach 

2) Unsupervised classification of the Landsat image into 5 classes 

3) Deriving of correction parameters for each wavelength and each land cover stratum 

4) Applying the correction parameters to the uncorrected image 

Point 1 has already been discussed above and point 2 performs an unsupervised classification using 

the k means algorithm (ee.Clusterer.wekaKMeans) in Google Earth Engine to obtain land cover strata 

(cf (Arthur and Vassilvitskii 2007)). The unsupervised classification is performed using all image 

bands, three tasseled cap bands (brightness, greenness, and wetness), the tasseled cap angle (Crist 

1985; Powell et al. 2010), the normalized difference vegetation index (NDVI), and the normalized 

burn ratio (NBR). The first two points are only used to obtain a land cover classification and the 

image with tasseled cap bands and the D-S topographic correction applied is not further used. Using 

these land cover strata, the parameters for the S-E topographic correction are derived using 

equation 3 and applied to the image using equation 2. 

  

https://paperpile.com/c/sxAkfD/mNBC
https://paperpile.com/c/sxAkfD/p8i6+7Jlf
https://paperpile.com/c/sxAkfD/p8i6+7Jlf
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Image composition 
Image composition refers to an approach where a new, composite image is created using pixels from 

multiple images. With Landsat data such approaches became increasingly popular when the Landsat 

7 data became affected by the Scan Line Corrector (SLC) failure in 2003. Initial approaches selected a 

clear image with leaf-on condition and then filled the SLC gaps using pixels from scenes acquired 

within one or two 16-day cycles (Gutman et al. 2008). Soon fully pixel-based approaches followed 

(i.e. without using a base image) and the composition strategies vary depending on the study focus. 

Recent approaches apply multiple criteria to select the best pixel from the series of available pixels, 

including comparisons of pixel reflectances, distance to clouds and cloud shadows, distance to the 

season greenness peak or the target day of the composite, and weights for different years in case 

the composition period spans over multiple years (Hansen et al. 2008; Roy et al. 2010; Potapov, 

Turubanova, and Hansen 2011; Griffiths et al. 2013; Frantz et al. 2017). The image composition 

strategy we implemented in the tool applies such criteria according to user defined inputs (e.g. 

target year, length of the season) and provides users with the flexibility to adjust the image 

composition to the needs of their study (e.g. focus on low or high greenness). The four criteria we 

implemented are described in the following sections. 

Image composition years 
Usually the image composition is performed for a specific season (e.g. 2-4 months) within one year 

to avoid that the image composite is affected by phenology (i.e. seasonal variation of the land cover 

types). In heavily clouded regions, however, the composite image may be affected by no data gaps 

because some locations show persistent cloud cover throughout the selected season. Such 

composites can be improved by including images from the same season of the previous (or 

following) years. This minimizes “no data” gaps in the composite as well as phenology, but at the 

same time the composite may be affected by land cover changes that occurred over the selected 

years. The appropriate composition strategy thus depends on study region and focus. In the tool 

users can define the amount of years used for the composite (one to multiple consecutive years) and 

when working with multiple years they can also select which years are prioritized in the composite. 

A) Focus on the middle year of the composite (i.e. highest weights assigned to the “average year” of 

the composition period); and B) focus on the most recent year (i.e. highest weight assigned to the 

last year of the composition period) (see equations 4A and 4B respectively). The minimum weight we 

assign is 0.5 so that other parameters that consider the pixels reflectance quality (e.g. distance to 

clouds, pixel reflectances) have more importance in determining the ultimate weight of a pixel (see 

Figure 2). 

Equations 4A and 4B: Calculation of pixel-based image composition weights in relation to the image acquisition 

years. startYear = first year considered for the composite; compYears = consecutive years to be considered in 

the composite; midYear = startYear + (compYears/2); acqYear = the acquisition year of a pixel; deltaYear = 

weight assigned to the pixel. 

 

𝑑𝑒𝑙𝑡𝑎𝑌𝑒𝑎𝑟𝐴  =  |
|𝑚𝑖𝑑𝑌𝑒𝑎𝑟 −  𝑎𝑐𝑞𝑌𝑒𝑎𝑟|

𝑐𝑜𝑚𝑝𝑌𝑒𝑎𝑟𝑠
 −  1| 

 

𝑑𝑒𝑙𝑡𝑎𝑌𝑒𝑎𝑟𝐵  =  
𝑎𝑐𝑞𝑌𝑒𝑎𝑟 −  𝑠𝑡𝑎𝑟𝑡𝑌𝑒𝑎𝑟

2 ⋅  𝑐𝑜𝑚𝑝𝑌𝑒𝑎𝑟𝑠
 +  0.5 

 

https://paperpile.com/c/sxAkfD/dOfy
https://paperpile.com/c/sxAkfD/IM9C+GmKa+Bag6+lUyX+zBjB
https://paperpile.com/c/sxAkfD/IM9C+GmKa+Bag6+lUyX+zBjB
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Figure 2: Image composition: Weights by year. Weights are assigned to the data based on a target year 

(composition strategy A or B). In the illustrated example startYear = 2012 and compYears = 5 (endYear = 2016). 

 

 

Image composition period 
The duration of the image composition period has probably most impact on the quality of the 

composite, because the period defines how many images are considered for the composite. A short 

period may result in the occurrence of data gaps while a long period increases the amount of valid 

data, but may result in visible changes in phenology. To minimize this issue, images acquired mid-

season (i.e. the target day) are assigned the highest weight and weights decrease towards the 

beginning and end of the season in a bell-shaped curve using an approximation of the Gaussian 

function (Equation 5 and Figure 3) (Griffiths et al. 2013). 

Equation 5: Approximation of the Gaussian function to assign seasonal weights with x: acquisition day of the 

pixel/image; b: position of the center peak (i.e. the target day mid-season); c: standard deviation which we 

approximated by calculating (𝑒𝑛𝑑𝐷𝑎𝑦 −  𝑠𝑡𝑎𝑟𝑡𝐷𝑎𝑦) ⋅ 0.3 (with a range of consecutive values the standard 

deviation varies with the length of the range and not its values). 

 

𝑑𝑒𝑙𝑡𝑎𝐷𝑎𝑦 =  𝑒
−

(𝑥−𝑏)2

2𝑐2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/sxAkfD/lUyX
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Figure 3: Image composition: Weights by period. Weights are assigned to the data based on the period/season 

and the target day (mid-season), which obtains the highest weight. The example shows a start day of 170 (day 

of the year), end day of 250, and a target day of 210. 

 

 

Distance to clouds and cloud shadows 
Masking of clouds and cloud shadows was based on the “pixel quality attributes” band (Landsat, 

produced using CFMASK, 

cf https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T1_SR) or the “QA60” band 

(Sentinel, bit mask band with cloud mask information, 

cf https://code.earthengine.google.com/dataset/COPERNICUS/S2). For Landsat we masked “cloud 

shadows” (bit 3), “clouds” (bit 5), medium-high “cloud confidence” (bits 6-7), and medium to high 

“cirrus confidence” (Landsat 8 only, bits 8-9). For Sentinel we masked “opaque” and “cirrus” pixels 

(bits 10 and 11 of the QA60 band) and expanded the masks by 1200m to exclude cloud edges from 

the images. This was not necessary for the Landsat masks, the CFMASK algorithm already masked 

cloud edges properly. Next, we ran a cost distance function on the data to define the distance to 

clouds for all unclouded pixels and assigned weights to the unclouded pixels based on their distance 

to clouds using the sigmoid function. This s-shaped curve gives full weight to unclouded pixels with a 

distance of >= 1500m to clouds and the weights decrease according to the sigmoid function the 

closer the pixel is to the clouds/cloud shadows (Griffiths et al. 2013, 2014/8). 

 

Equation 6: Modified sigmoid function to assign each pixel with a weight that accounts for the distance of the 

pixel to clouds and cloud shadows. CloudDistance is the distance (in meters) to clouds and cloud shadows of 

the respective pixel. 

 

𝑐𝐷𝑖𝑠𝑡𝑊𝑒𝑖𝑔ℎ𝑡 =  
1

1 + 𝑒(−0.008⋅(𝑐𝑙𝑜𝑢𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 750))
 

 

 

 

 

 

 

 

 

https://code.earthengine.google.com/dataset/LANDSAT/LC08/C01/T1_SR
https://code.earthengine.google.com/dataset/COPERNICUS/S2
https://paperpile.com/c/sxAkfD/lUyX+boqr
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Figure 4: Image composition: Distance to clouds weights. Weights are assigned to the pixels to account for the 

proximity of clouds and cloud shadows using a modification of the Sigmoid function. Pixels with a distance 

>1500m from clouds obtain a weight of 1. 

 

 

Pixel reflectance 
The assessment of the pixel reflectance is performed to avoid that oversaturated, clouded, or 

shadowed pixels that were omitted in the cloud masking are included in the image composite. We 

performed this assessment on the topographically corrected near infrared (NIR) band as it shows the 

least noise over forested areas (cf. (Potapov, Turubanova, and Hansen 2011)) and assess for each 

pixel location the mean, median, minimum, maximum, and standard deviation of all valid pixels. We 

then provide the user with three options of assigning pixel weights: 

A) The pixel with the median value obtains the highest weight and the pixel with the largest 

absolute deviation from the median (derived from the minimum and maximum) obtains the 

lowest weight. Weights for the other pixels are assigned in a linear way. 

B) Focus on low greenness to obtain a composite that represents the driest status of 

vegetation. In this case the highest weight is assigned to the pixel closest to the ‘mean 

reflectance minus the standard deviation’. The pixel with the largest absolute deviation from 

the ‘mean minus standard deviation’ is assigned the lowest weight and pixels in between are 

again assigned weights in a linear way 

C) Focus on high greenness to obtain a composite that represent the most humid status of 

vegetation. Highest weight is assigned to the pixel closest to the ‘mean plus the standard 

deviation’, the pixel with the largest absolute deviation is assigned the lowest weight, and 

the other pixels obtain weights in a linear way. 

 

Equation 7: Calculation of pixel reflectance weights using a target reflectance value. maxDif is the maximum 

absolute difference of all available pixels from the target reflectance value and pixDif is the absolute deviation 

of the considered pixel from the target reflectance value. The target reflectance value is: A) the median of all 

available pixels (default); B) the ‘mean minus standard deviation’ of all available pixels (“lower”); and C) the 

‘mean plus standard deviation’ of all available pixels (“upper”). 

 

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝐷𝑒𝑙𝑡𝑎 =  1 −  (
𝑝𝑖𝑥𝐷𝑖𝑓 −  𝑚𝑎𝑥𝐷𝑖𝑓

𝑚𝑎𝑥𝐷𝑖𝑓
+ 1) 

 

https://paperpile.com/c/sxAkfD/Bag6
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The most appropriate strategy needs to be evaluated by the user, as results vary by period, study 

region, study focus, etc. Strategy A works well in most cases, while B may include more shadowed 

pixels in the composite, but less clouds. Strategy C may include less shadowed pixels in the 

composite, but more clouds, in case some clouds/cloud shadows were not masked. 

The final image composition is then performed by calculating the arithmetic mean of all four weights 

and the pixel with the highest weight is used for the composite. 

 

Limitations 
● Sentinel: no surface reflectance available in GEE. Until this is available the image composition 

using Sentinel data is performed without topographic correction. Please be careful when 

working with Sentinel composites as the pre-processing level of Sentinel is not yet fully 

suitable for all applications using image composites. 

● Semi-empirical methods: computationally demanding due to the calculation of regressions. 

Large areas and/or long periods will most likely result in a time-out (GEE error message). 
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